FOR PUBLIC WATER SYSTEMS THAT ARE USING SURFACE WATER SOURCES OR GROUND WATER SOURCES UNDER THE INFLUENCE OF SURFACE WATER Summary Page

PUBLIC WATER	City of Carologna				PLANT NAM		Noverso Millo		
SYSTEM NAME:	City of Corsicana			- Ic	OR NUMBEI certify that I am familiar with		Navarro Mills mation contained in this	report and	d that
					the best of my knowledge,				
PWS ID No.:	1750002		Operator's Signature:	_					
Report for the Month of:	September 2013		Certificate No. & Grade	: <u>w</u>	/O0004220, A			Date:	October 1, 2013
			TREATMEN	IT PLAN	IT PERFORMANCE				
Total number of	of turbidity readings:		180	Number	of 4-hour periods whe	en plant	was off-line:		0
	dings above 0.10 NTU:	:	39		of 4-hour periods whe	•	was on-line		
	idings above 0.3 NTU:		0		oidity data was not coll				0
	idings above 0.5 NTU: idings above 1.0 NTU:				of days when plant wa vidual filter turbidity da				0
	wable turbidity level:		0.3		of days with readings				0 (2)
	readings above this lin	mit:	0.0 % (1)		of days with readings				0 (3)
Sta	atistical	Maximum turl	bidity reading:	0.16	NTU	Av	erage turbidity valu	ue:	0.09 NTU
Sur	mmary	Minimum turb	, ,		NTU		andard deviation:		0.025 NTU
		CFE 95 th perce	entile value:	0.14	NTU	IFE	E 95 th percentile:		0.280_ NTU
,	ys with a low CT		_	-	log inactivation for G				4.08
	an 4.0 consecutive hou	urs:	0	_	e log inactivation for vi				46.58
-	ys with a low CT 4.0 consecutive hours:		0 (4)		of days when profiling of days when CT data				<u>0</u>
	nfectant residual requir	red leaving the	plant:	0.5	mg/L, measured as T	Fotal Chl	lorine		
•	ys with a low residual	uro	0						
	an 4.0 consecutive hou	ırs:		Number	f -lavo vehon dioinfo				
-	ys with a low residual 4.0 consecutive hours:	ė.	0 (5)		of days when disinfed the plant was not prop				0
			- (-)			,			
			DIST	RIBUTIO	ON SYSTEM				
Minimum disinfed	ctant residual required	I in distribution	system:	0.5	mg/L, measured as T	Total Chi	lorine		
	readings this month:		60 (at least 30		, ,				
_	tant residual value:		2.27	Percenta	age of readings with a	low resi	idual this month:		0.0 % (6A)
	ngs with a low residual		0	-	for the second				0.0 0/.000
Number of readin	ngs with no detectable	residual:	0	Percenta	age of readings with a	low resi	idual last montn:		0.0 % (6B)
			ADDITIONAL	REPOR	TS & WORKSHEE	TS			
The Bage 1 Ad	dandum (Bublic Notice	ca) is not requir	red because there were n				norting violations	canartad	
	•			NONE	ent technique or monit	٠.	Filter Assessm	•	
	ort(s) for individual filte ort(s) for individual filte	•		NONE	O Filter Profile (9		O Filter Assessm		
	al IFE Reports are requ	•	_	NUNE	C Filter Frome (s	3)	O Filter Assessin	ient (10)	O CPE (11)

SURFACE WATER MONTHLY OPERATING REPORT

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY
WATER SUPPLY DIVISION/PUBLIC DRINKING WATER SECTION (MC-155)
P.O. BOX 13087, AUSTIN, TEXAS 78711-3087

TCEQ - 0102C (06-01-09) PAGE 1 SWMOR

FOR PUBLIC WATER SYSTEMS THAT ARE USING SURFACE WATER SOURCES OR GROUND WATER SOURCES UNDER THE INFLUENCE OF SURFACE WATER (cont.)

Turbidity Data Page

PUBLIC WATER				PLANT NAME	
SYSTEM NAME:	City of Corsicana			OR NUMBER:	Navarro Mills
			<u>.</u>		
PWS ID No.:	1750002			Connections:	10,884
Month:	September	Year:	2013	Population:	23,770
		-		•	

	PERFORMANCE D Raw Treated RAW WATER SETTLED WATER TURBIDIT																	
	Raw	Treated	RAW V	VATER		SETTL	ED WAT	ER TURE	BIDITY				-	NISHED	WATER	NIALITY		
	Water	Water	ANAL	YSES			(Mandate	ory Data)					Г	INIONED	WAIER	JUALITY		
	Pumpage	Pumpage					Basi	n No.					Turb	idity			Lowest	
Date	(MGD)	(MGD)	NTU	Alk.	1	2	3	4	5	6	NTU1	NTU2	NTU3	NTU4	NTU5	NTU6	Residual	Time=
1	11.960	8.551	22	99	1.3	1.4	1.6	1.6	1.5	1.4	0.15	0.13	0.16	0.16	0.13	0.13	3.1	
2	9.210	9.110	19	93	1.0	8.0	8.0	8.0	8.0	0.8	0.14	0.14	0.15	0.16	0.14	0.12	2.8	
3	7.450	6.792	12	91	0.7	0.6	0.5	0.6	0.5	0.7	0.12	0.12	0.11	0.12	0.09	0.12	2.7	
4	7.010	6.574	15	93	0.6	0.5	0.5	0.6	0.6	0.6	0.09	0.10	0.12	0.10	0.08	0.10	2.3	
5	9.300	7.912	20	95	0.5	0.5	0.6	0.6	8.0	0.6	0.12	0.11	0.13	0.13	0.13	0.13	2.3	
6	9.260	8.426	19	99	0.6	0.7	0.7	0.7	0.7	0.7	0.13	0.14	0.15	0.15	0.14	0.16	2.8	
7	9.200	8.795	27	99	0.5	0.5	0.6	0.5	0.6	0.5	0.11	0.12	0.11	0.10	0.10	0.10	2.6	
8	9.250	8.253	21	98	0.5	0.5	0.5	0.6	0.5	0.5	0.10	0.10	0.10	0.10	0.09	0.08	2.6	
9	9.220	8.297	16	97	0.5	0.4	0.6	0.4	0.5	0.5	0.09	0.08	0.10	0.10	0.10	0.10	2.6	
10	9.280	8.076	19	97	0.5	0.6	0.5	0.7	0.5	0.6	0.11	0.12	0.12	0.11	0.11	0.10	2.6	
11	9.470	8.135	18	97	0.6	0.5	0.5	8.0	0.6	0.7	0.11	0.10	0.10	0.09	0.08	0.10	2.7	
12	8.830	7.938	18	97	0.4	0.5	0.4	0.6	0.5	0.5	0.07	0.08	0.08	0.08	0.07	0.07	2.7	
13	7.310	6.993	19	97	0.4	0.4	0.5	0.5	0.5	0.5	0.09	0.08	0.08	0.08	0.08	0.07	2.1	
14	7.730	7.189	20	97	0.5	0.6	0.5	0.7	0.5	0.5	0.08	0.08	0.07	0.08	0.08	0.08	2.4	
15	9.030	8.427	25	96	0.4	0.5	0.5	0.5	0.5	0.5	0.07	0.08	0.08	0.08	0.08	0.08	2.5	
16	9.130	7.981	25	97	0.5	0.4	0.5	0.4	0.5	0.4	0.08	0.09	0.08	0.08	0.07	0.07	2.5	
17	9.300	8.096	26	96	0.6	0.5	0.6	0.6	0.5	0.6	0.07	0.07	0.06	0.07	0.07	0.06	2.3	
18	9.370	8.186	26	97	0.4	0.6	0.5	0.6	0.5	0.6	0.06	0.07	0.06	0.07	0.07	0.07	2.2	
19	8.390	7.098	34	96	0.6	0.6	0.7	0.6	0.6	0.5	0.07	0.07	0.07	0.08	0.07	0.07	2.4	
20	4.890	5.320	33	97	0.5	0.6	0.6	0.7	0.6	0.6	0.07	0.07	0.07	0.08	0.09	0.08	2.4	
21	4.310	3.739	44	96	0.4	0.5	0.5	0.6	0.4	0.5	0.08	0.07	0.06	0.07	0.08	0.08	2.6	
22	4.480	4.165	35	96	0.4	0.5	0.4	0.6	0.3	0.4	0.09	0.07	0.06	0.06	0.05	0.08	2.7	
23	8.200	6.410	34	95	0.4	0.4	0.5	0.5	0.5	0.4	0.07	0.06	0.06	0.06	0.06	0.06	1.3	
24	8.280	6.399	39	93	0.5	0.5	0.6	0.6	0.5	0.5	0.06	0.07	0.06	0.07	0.07	0.06	2.4	
25	5.880	5.531	39	94	0.6	0.8	8.0	8.0	0.9	0.7	0.07	0.07	0.07	0.07	0.07	0.07	2.3	
26	5.260	5.109	40	92	0.5	0.6	0.6	0.8	0.6	0.7	0.06	0.06	0.06	0.07	0.07	0.07	2.1	
27	7.260	5.537	40	96	0.5	0.7	0.7	0.8	0.6	0.6	0.08	0.09	0.10	0.10	0.10	0.09	1.8	
28	7.210	5.846	33	95	0.6	0.7	8.0	0.7	0.7	0.8	0.10	0.10	0.10	0.10	0.09	0.09	2.0	
29	5.490	5.415	35	98	0.4	0.5	0.5	0.6	0.5	0.6	0.09	0.09	0.09	0.08	0.09	0.08	1.8	
30	4.230	3.965	26	96	0.4	0.4	0.5	0.4	0.5	0.4	0.09	0.09	0.07	0.06	0.06	0.06	2.3	
31																		

Total 235.190 208.265

Avg 7.840 6.942

Max 11.960 9.110

NOTE: ONLY use the "Time*" column to show the length of time that the disinfectant residual entering the distribution system fell below the acceptable level.

	Certificate No.			
SUBMITTED BY:	and Grade:	WO0004220, A	Date:	October 1, 2013

Min

4.230

3.739

FOR PUBLIC WATER SYSTEMS THAT ARE USING SURFACE WATER SOURCES OR GROUND WATER SOURCES UNDER THE INFLUENCE OF SURFACE WATER (cont.)

Filter Data Page

PUBLIC WATER		PLANT NAME			
SYSTEM NAME: City	ty of Corsicana	OR NUMBER:	Navarro Mills		
PWS ID No.: 175	50002	Month:	September	Year:	2013

								Р	ERFO	RMANC	E DAT	·A								
								-			TER TUR									
	Filter	No. 1	Filter	No. 2	Filter	No. 3	Filter	No. 4	Filter	No. 5	Filter	No. 6	Filter	No. 7	Filter	No. 8	Filte	r No. 9	Filter	No. 10
Date	Max	4 Hrs	Max	4 Hrs	Max	4 Hrs	Max	4 Hrs	Max	4 Hrs	Max	4 Hrs	Max	4 Hrs	Max	4 Hrs	Max	4 Hrs	Max	4 Hrs
1	0.33	Х	0.29	Х	0.32	Х	0.38	0.07	0.30	Х	0.32	0.12								
2	0.21	Х	0.19	0.15	0.26	0.21	0.22	Х	0.20	х	0.27	Х								
3	0.17	Х	0.15	х	0.18	х	0.12	Х	0.11	Х	0.14	Х								
4	0.16	Х	0.13	Х	0.15	Х	0.11	Х	0.18	0.17	0.28	Х								
5	0.18	Х	0.16	Х	0.17	Х	0.21	Х	0.19	х	0.31	0.26								
6	0.19	Х	0.16	Х	0.28	0.16	0.21	Х	0.20	Х	0.25	Х							<u> </u>	
7	0.12	Х	0.18	0.15	0.17	Х	0.14	Х	0.13	Х	0.16	Х							<u> </u>	
8	X	X	0.15	Х	0.14	X	0.11	X	0.10	X	0.16	Х								
9	0.18	0.17	0.14	Х	0.22	0.16	0.19	0.18	0.18	0.15	0.13	X								
10	0.14	X	0.12	0.10	0.17 0.17	X	0.17	X	0.16	X	0.27	0.18								
12	0.11	0.10	0.10	0.10 X	0.17	0.12	0.12	x x	0.12	x x	0.10	X X								
13	0.14	x	0.10	x	0.13	X	0.00	×	x	×	0.10	×								
14	0.10	x	0.10	x	0.12	X	0.12	0.11	0.14	0.12	0.10	x								
15	0.08	x	0.12	0.10	0.11	х	0.11	х	0.10	х	0.16	0.13								
16	0.09	Х	0.11	х	х	х	0.10	х	0.10	х	0.12	Х								
17	0.12	Х	0.08	Х	0.13	0.10	0.08	Х	0.08	х	0.09	Х								
18	х	х	0.09	х	0.12	Х	0.08	х	0.08	х	0.10	х								
19	х	х	0.09	х	0.13	х	0.09	х	0.09	х	0.11	х								
20	х	х	0.11	Х	0.13	Х	0.10	х	х	х	0.13	х								
21	0.16	0.07	х	х	0.09	х	0.07	х	0.13	0.09	0.08	х								
22	0.07	Х	Х	Х	0.08	Х	0.08	0.07	0.07	х	х	Х								
23	0.07	Х	0.11	0.07	х	х	0.07	Х	0.07	х	0.11	0.09								
24	0.08	Х	0.09	Х	х	Х	0.08	Х	0.08	х	0.11	Х								
25	0.08	Х	0.09	х	х	х	0.09	Х	х	х	0.12	х								
26	0.15	0.10	0.10	Х	х	Х	0.12	х	0.18	0.12	0.11	х								
27	0.13	х	0.11	Х	х	Х	х	х	0.15	х	0.13	х								
28	0.13	х	0.11	Х	х	Х	х	х	0.14	х	0.13	х							<u> </u>	
29	0.10	х	0.09	Х	х	Х	х	х	0.12	х	0.11	х							ļ	
30	0.07	Х	Х	Х	0.18	0.11	х	Х	0.08	Х	0.08	Х							<u> </u>	
31														Eilte	r No.				<u> </u>	
					Criteria					1	2	3	4	5	6	7	8	9	10	Plant
SNS	Number of days with event(s) above 0.5 NTU at 4.0 hrs this month										0				0				10	
Ĕ					ve 1.0 N					0	0	0	0	0	0					
E A					ve 1.0 N					0	0	0	0	0	0					
NC					ve 1.0 N			10		0	0	0	0	0	0					
PLI,					s) above					0	0	0	0	0	0					
SUMMARY & COMPLIANCE ACTIO					ve 2.0 N								7777			888	7788		7777	0
ى «																				0
¹RY	Number of days with event(s) above 2.0 NTU last month Does the filter/plant have an approved Corrective Action Plan?									N	N	N	N	N	N					N
MMA	Is the plant required to submit a Filter Profile Report?													l e						14
SUI					ilter Ass					N N	N	N N	N N	N N	N N					
										N	N	N	N	N	N		111			A1
	is the p	ıanτ requ	irea to si	upmit a l	Request f	or comp	mance Cl	-c(N

	Certificate No.			
SUBMITTED BY:	and Grade:	WO0004220, A	Date:	October 1, 2013
	·		-	

FOR PUBLIC WATER SYSTEMS THAT ARE USING SURFACE WATER SOURCES
OR GROUND WATER SOURCES UNDER THE INFLUENCE OF SURFACE WATER (cont.)

Disinfection Data Page

PUBLIC WATER		PLANT NAME			
SYSTEM NAME:	City of Corsicana	OR NUMBER:	Navarro Mills		
PWS ID No.:	1750002	Month:	September	Year:	2013

			DISINFECTION	N PROCESS P	PARAMETERS										
	APPROVED CT STUDY PARAMETERS PERFORMANCE STANDARDS														
				Log Inactivations											
Parameters	D1	D2	D3	D4	D5	Giardia lamblia Cysts	Viruses								
Flow Rate (MGD)	20.250	20.250		0.5	2.0										
T ₁₀ (minutes)	109.1	13.0		0.3	2.0										

		F	ERFOR	RMANC	E DA	ГА						F	ERFOR	RMANC	E DA	ГА			
			DISINE	ECTION	PROCI	ESS DATA							DISINI	ECTION	I PROCI	ESS DATA			
D-4-	Disinfectant	C	Flow	Temp		Giardia	Virus	Inact.	T:	Date	Disinfectont	C	Flow	Temp	-11	Giardia	Virus	Inact.	т:
Date	Disinfectant NA D1	(mg/L)	(MGD)	(°C)	pН	Log	Log	Ratio	Time=	Date	Disinfectant NA D1	(mg/L)	(MGD)	(°C)	pН	Log	Log	Ratio	Time=
	FCL D2	0.4	12.600	30.0	6.0							0.2	9.200	29.0	7.0				
1	CLA D3	0.4 3.2	12.600 12.600	30.0	6.9 7.6	3.07	31.51	6.14	1110	9	FCL D2 CLA D3	2.7	9.200	30.0	7.0 7.6	2.98	23.64	5.96	
l ' l	D4	3.2	12.600	30.0	7.0	3.07	31.31	Marie Control	1111	9	D4	2.1	9.200	30.0	7.0	2.96	23.04	(G)	1111
								(G)			D5							(G)	
	D5 NA D1										NA D1								
		0.4	0.000	20.0	0.0							0.5	0.400	20.0	7.0				
2	FCL D2	0.4	9.300	29.0	6.9	2.04	20.50	7.04		10	FCL D2	0.5	9.400	30.0	7.0	2.07	40.40	7.00	
_	CLA D3	2.9	9.300	30.0	7.7	3.81	39.58	7.61	1111	10	CLA D3	2.7	9.400	30.0	7.6	3.97	49.10	7.93	1111
	D4							(G)			D4							(G)	
	D5										D5							44	
	NA D1	2.1	0.000	00.0	7.0						NA D1	0.1	0.000	00.0	0.0				
	FCL D2	0.4	9.200	30.0	7.0					44	FCL D2	0.4	9.600	29.0	6.9				
3	CLA D3	2.7	9.200	30.0	7.7	3.72	41.70	7.44	111	11	CLA D3	2.8	9.600	30.0	7.5	3.61	38.07	7.21	
	D4							(G)			D4							(G)	
	D5										D5							44	
	NA D1										NA D1								
	FCL D2	0.4	9.300	30.0	6.9						FCL D2	0.5	9.600	29.0	6.9				
4	CLA D3	2.7	9.300	30.0	7.7	3.73	41.25	7.46		12	CLA D3	2.9	9.600	29.0	7.6	3.99	45.37	7.99	
	D4							(G)			D4							(G)	
	D5								111		D5								
	NA D1										NA D1								
	FCL D2	0.5	9.500	29.0	7.0				1111		FCL D2	0.4	7.400	29.0	6.8				
5	CLA D3	2.6	9.500	30.0	7.6	3.73	45.55	7.46		13	CLA D3	2.1	7.400	2.9	7.5	2.31	40.35	4.62	
	D4							(G)			D4							(G)	
	D5								1111		D5					1111			1111
	NA D1										NA D1								
	FCL D2	0.4	9.300	29.0	7.0				111		FCL D2	0.5	9.000	29.0	6.9				
6	CLA D3	3.0	9.300	30.0	7.6	3.85	39.87	7.69		14	CLA D3	2.7	9.000	30.0	7.8	4.08	48.38	8.17	
	D4							(G)			D4							(G)	
	D5					111			1111		D5					111		111	1111
	NA D1										NA D1								
	FCL D2	0.3	9.300	29.0	7.0						FCL D2	0.5	9.200	28.0	7.0				
7	CLA D3	2.7	9.300	30.0	7.5	3.27	31.20	6.54		15	CLA D3	2.6	9.200	29.0	7.6	3.74	43.89	7.48	
	D4							(G)			D4							(G)	
	D5							111	1///		D5								
	NA D1										NA D1								
	FCL D2	0.4	9.400	30.0	7.0						FCL D2	0.5	9.400	29.0	7.0				
8	CLA D3	2.7	9.400	30.0	7.6	3.64	40.81	7.29		16	CLA D3	2.6	9.400	29.0	7.6	3.77	45.54	7.54	
	D4							(G)			D4							(G)	
	D5									1	D5								

NOTE: = ONLY use the "Time=" column to show the length of time that the total inactivation ratio was less than 1.00.

 Certificate No.

 SUBMITTED BY:
 and Grade:
 WO0004220, A
 Date:
 October 1, 2013

FOR PUBLIC WATER SYSTEMS THAT ARE USING SURFACE WATER SOURCES

					OR C	GROUND	WATER S				FLUENCE OF S age (cont.)	SURFAC	E WATER	R (cont.)					
	C WATER M NAME:	City of	Corsicana	a							PLANT NA OR NUMB		Navarro	Mills					
PWS IE		175000									Month:		Septemb				Year:	2013	
	_					ı	DISINFE	CTION	PROCE	SS PA	RAMETERS								
				APPROV	ED CT S	STUDY PA								PERF	ORMAN	CE STANE	DARDS		
					2001		Disinfection									ctivations			
Paran	neters		D.	1	l i	D2	Distrilection		D4	.	D5	Gi	ardia lam	blia Cys		Ctivations	Viru	ıs	
	Rate (MGD)		20.2			.250	20.2				-								
T ₁₀ (n	ninutes)		109	0.1	1	3.0	100	0.0					0.5	•			2.0)	
			ERFOR	MANC	E DAT	ΓΛ							PERFOR	MANC	E DA	ΓΛ			
						SS DATA										SS DATA			
		С	Flow	Temp		Giardia	Virus	Inact.				С	Flow	Temp		Giardia	Virus	Inact.	1
Date	Disinfectant	(mg/L)	(MGD)	(°C)	рН	Log	Log	Ratio	Time=	Date	Disinfectant	(mg/L)	(MGD)	(°C)	рН	Log	Log	Ratio	Time=
	NA D1					////					NA D1					////			
47	FCL D2	0.4	9.400	28.0	7.0	0.00	05.74	0.70		25	FCL D2	0.6	7.500	26.0	7.0	4.07	55.00		
17	CLA D3	2.6	9.400	29.0	7.5	3.38	35.74	6.76 (G)		25	CLA D3	2.9	7.500	27.0	7.9	4.97	55.60	9.94 (G)	
	D5										D5					////			
	NA D1					////					NA D1					////			
	FCL D2	0.5	9.500	29.0	7.0						FCL D2	0.6	7.400	26.0	7.0				
18	CLA D3	2.4	9.500	29.0	7.6	3.56	44.54	7.12 (G)	1111	26	CLA D3	2.4	7.400	27.0	7.8	4.50	54.89	9.00 (G)	
	D5					////		(6)			D5					////		(6)	
	NA D1					////	////	111	///		NA D1					////	////		
	FCL D2	0.5	9.500	29.0	7.0						FCL D2	0.6	7.500	26.0	6.9				
19	CLA D3	2.4	9.500	29.0	7.6	3.56	44.54	7.12		27	CLA D3	1.9	7.500	27.0	7.8	3.98	52.71	7.96	2112
	D4 D5					////		(G)			D4 D5							(G)	
	NA D1					////	////	111	///		NA D1					////	////	11/	///
	FCL D2	0.5	7.000	28.0	7.0						FCL D2	0.5	7.500	26.0	6.9				
20	CLA D3	2.6	7.000	29.0	7.7	4.92	57.68	9.84 (G)		28	CLA D3	2.4	7.500	27.0	7.7	4.20	46.29	8.40 (G)	1111
	D4 D5							(G)			D5					////		(G)	
	NA D1					1///	////				NA D1					////			///
	FCL D2	0.5	4.400	27.0	7.0						FCL D2	0.5	7.400	26.0	6.9				
21	CLA D3	2.7	4.400	28.0	7.9	7.80	86.15	15.59		29	CLA D3	2.1	7.400	26.0	7.7	3.93	45.62	7.87	1111
	D4 D5							(G)			D4 D5							(G)	
	NA D1								///		NA D1					1///		111	///
	FCL D2	0.5	4.500	27.0	7.0						FCL D2	0.5	4.300	26.0	6.9				
22	CLA D3	2.7	4.500	28.0	7.9	7.62	84.24	15.24	111	30	CLA D3	2.4	4.300	26.0	7.7	7.32	79.92	14.65	111
	D4 D5							(G)			D5							(G)	
	NA D1					1///			111		D1					////	////		///
	FCL D2	0.4	9.600	26.0	7.0						D2								
23	CLA D3	1.3	9.600	27.0	7.5	2.09	27.53	4.17		31	D3					0000		400	440
	D4 D5							(G)			D4 D5								
	NA D1														Max	7.80	86.15		
	FCL D2	0.5	9.700	26.0	7.0										Min	2.09	23.64		
24	CLA D3	2.6	9.700	27.0	7.7	3.37	36.24	6.73							Avg	4.08	46.58		
	D4 D5							(G)							SD	1.31	14.50	l	
NOTE:		tne " i im	e=" colum	n to sno	w the le	ngtn or til	ne that th	e total in	activation	ratio was	s less than 1.00								
									0	(- N									

TCEQ - 0102C (06-01-09) SWMOR PAGE 5

and Grade:

WO0004220, A

Date: October 1, 2013

SUBMITTED BY:

MONTHLY TOTAL ORGANIC CARBON REMOVAL REPORT (TOCMOR)

FOR SURFACE WATER OR GROUND WATER UNDER THE INFLUENCE OF SURFACE WATER SYSTEMS

PLANT NAME

OR NUMBER:

Navarro Mills

PUBLIC WATER

SYSTEM NAME:

Min

91.00

91.00

91.00

4.62

4.62

4.62

3.57

3.57

3.57

22.73

22.73

22.73

City of Corsicana

P	WS ID No.:	1/50002					Month:	September	Year:	2013
	Type of treatment:	Х	Conventional			Unconventional explain:				
Note: Syste	ms are requir	ed to run one TO	C Sample Set eve	ry month. Additio	nal space is provid	led for those systems	that do additional sar	mpling		
		Mont	hly TOC Samp	le Set		Step 1		Optiona	l data	
Test No.	Test Date	Raw Alkalinity	Raw TOC	Treated TOC	Actual % TOC Removed	Required % Removal	Step 1 Removal Ratio	Step 2 Required % Removal	Step 2 Removal Ratio	COMPLIANCE REMOVAL RATIO
		Enter	the Sample Set	results	calculated	calculated from matrix	calculated			calculated
1	9/3	91	4.62	3.57	22.7	35	0.65			0.65
2										
3										
4										
5										
6										
7										
8										
9										
10										
11										
12										
13										
14										
15										
16										
17										
18										

TOTAL ORGANIC CARBON (TOC) REMOVAL SUMMARY

TOC Sumi	Monthly Compliance				
Raw Water Alkalinity	Raw Water TOC	Treated Water TOC	TOC % Removal	ACC # used	Ratio
91	91 4.62		22.7	5 Mo. Avg	1.00

I certify that I am familiar with the information contained in this report and that	, to the bes	st of my know	edge, the information		
is true, complete, and accurate.					
Operator's	Certificate	No.			
Signature:	_	and Grade:	WO0004220, A	Date:	October 1, 2013

0.65

0.65

0.65

0.65

0.65

0.65

Submit the report by the 10th of the month following the reporting period to:

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY
WATER SUPPLY DIVISION/PUBLIC DRINKING WATER SECTION (MC-155)
P.O. BOX 13087, AUSTIN, TEXAS 78711-3087

TOC ALTERNATIVE COMPLIANCE CRITERIA REPORT FOR SURFACE WATER OR GROUND WATER UNDER THE INFLUENCE OF SURFACE WATER SYSTEMS

	UBLIC WATER YSTEM NAME:	City of Co	rsicana								LANT NAME R NUMBER:	Navarro Mil	ls			
	PWS ID No.:	1750002									Month:	September		Year:	2013	_
		tive Complian														
	(Before you c	an begin enteri		1		ox that shov		of the Altern			1	plying for.)	_			_
#1		#2		;	#3		#4		#5	Х	#6		#7		#8	لـ
	-															
ACC																
#1																
	-															
	-															
ACC#																
2																
	•															
ACC#																
]															
	<u>.</u>															
ACC#																
4																
	- Isource water	SUVA less than	or oqual to 3	0.0.1/mg.m2												_
	(either based on	most recent mont	h's data OR cald	culated quarter	ly as a running											
ACC#	Current	VA is the dissolved o	rganic carbon con	centration divide	ed by the ultravio	let light absorpti	ion at 254 nanomet	ers in the source	water before any	treatment of	any kind. Measure	monthly.				ı
5	Month SUVA 1.67	_														
																ı
ACC#	i															
6																
	i															
	• •															
ACC #7																
""																
	-															
ACC#																
8																
	•															
		I certify that I an complete, and a	n familiar with th accurate.	e information o	contained in thi	is report and th	nat, to the best of	my knowledge,	the information	n is true,						
	Ope	rator's Signature:							Certificate No.	and Grade:	WO000422	0. A		Date:	October 1, 2013	

STEP 2 JAR TEST REPORT

PUBLIC V		City of Corsical		E WATER OR GRO	OUND WATER U		PLANT NAME OR NUMBER:			
PWS ID N								15		
					DI AN	T CONDITION	10			
			COA	AGULANT	COAGULA	T CONDITION NT AID		C AID	pH ADJUS	STMENT
RAW WATER SOURCE(s) Type		Dose (mg/L)	ose (mg/L) Type		Dose (mg/L) Type		Туре	Dose (mg/L)		
					STEP 2 JAR	TEST PARAM	METERS			·
COAGULANT BA			BASE JAR SIZE				JAR TEST C	ONDITIONS		
Trons		Stock Solution Concentration Type		Stock Solution Concentration			id Mix	_	Flocculation	Settling
Тур	е	(g/L)	Туре		Volume	Speed (rpm)	Duration (minutes)	Speed (rpm)	Duration (minutes)	Duration (minutes)
		(9/2)		(g/L)	(liters)	(17111)	(minutes)	(ipiii)	(minutes)	(minutes)
	ī	22.12.11	***=	5.0		EST RESULT	S	ı		Cumulativa
		COAGUL	ı	BAS	ı	Alkalinity	рН	тос	Incremental TOC Remov	40 .00
Jar N	lo.	Dose (Alum eq.)	Volume (mL)	Dose (mg/L)	Volume (mL)	(mg/L as CaCO₃)		(ma/l.)	mg/L of alum)	Keillovai
RAV	N	(mg/L)	(IIIL)	(IIIg/L)	(IIIL)			(mg/L)		(%)
1 2										
3										
5						Target pH (based on				-
6						raw water				
<u>7</u>						alkalinity)				
9										
10 11										
12										
	Has the TCEQ approved this source as "Not Amena even though Target pH was not reached?		able" to Treatment		TOC, % Rem	oval at Apparent	PODR:			
		vide the date of the T		nail.						
	1.2)	7	ΓOC (mg/	L) VS C	oagula	ınt Dos	е		1.0
	1.2	-								0.9
	1.0) 								0.9 (a)
\Box	0.0	,								0.7
)g	3.0	7								0.6
۳	0.6	3 ——							+	0.5
TOC (mg/	0.4	1								0.0 0.8 0.7 0.6 0.5 0.1 0.0 0.
Ĕ									Ť	0.3 2 0.2
	0.2	2							\equiv	0.2
	0.0)								0.0
		0	0		0	1		1	1	36
				Alum (or equiv	alent) D	ose	-	·	5
				→ TOC	-	-Incremental TO				<u>=</u>
						(mg/L TOC remo	oved per 10 mg/L	of alum)		
				mation contained in this	report and that, to	the best of my				
Operator's		knowledge, the inform	nation is true, con	nplete, and accurate.				Certificate No.		
Signature							_	and Grade:		

TOCMOR